Conditional Mutual Information - Based Feature Selection Analyzing for Synergy and Redundancy
نویسندگان
چکیده
© 2011 ETRI Journal, Volume 33, Number 2, April 2011 Battiti’s mutual information feature selector (MIFS) and its variant algorithms are used for many classification applications. Since they ignore feature synergy, MIFS and its variants may cause a big bias when features are combined to cooperate together. Besides, MIFS and its variants estimate feature redundancy regardless of the corresponding classification task. In this paper, we propose an automated greedy feature selection algorithm called conditional mutual information-based feature selection (CMIFS). Based on the link between interaction information and conditional mutual information, CMIFS takes account of both redundancy and synergy interactions of features and identifies discriminative features. In addition, CMIFS combines feature redundancy evaluation with classification tasks. It can decrease the probability of mistaking important features as redundant features in searching process. The experimental results show that CMIFS can achieve higher best-classification-accuracy than MIFS and its variants, with the same or less (nearly 50%) number of features.
منابع مشابه
Feature selection based on mutual information and redundancy-synergy coefficient.
Mutual information is an important information measure for feature subset. In this paper, a hashing mechanism is proposed to calculate the mutual information on the feature subset. Redundancy-synergy coefficient, a novel redundancy and synergy measure of features to express the class feature, is defined by mutual information. The information maximization rule was applied to derive the heuristic...
متن کاملGender Classification from Face Images Using Mutual Information and Feature Fusion
In this article we report a new method for gender classification from frontal face images using feature selection based on mutual information and fusion of features extracted from intensity, shape, texture, and from three different spatial scales. We compare the results of three different mutual information measures: minimum redundancy and maximal relevance (mRMR), normalized mutual information...
متن کاملComments on supervised feature selection by clustering using conditional mutual information-based distances
Supervised feature selection is an important problem in pattern recognition. Of the many methods introduced, those based on the mutual information and conditional mutual information measures are among the most widely adopted approaches. In this article, we re-analyze an interesting paper on this topic recently published by Sotoca and Pla (Pattern Recognition, Vol. 43 Issue 6, June, 2010, p. 206...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملClassifying EEG Data into Different Memory Loads Across Subjects
In this paper we consider the question of whether it is possible to classify n-back EEG data into different memory loads across subjects. To capture relevant information from the EEG signal we use three types of features: power spectrum, conditional entropy, and conditional mutual information. In order to reduce irrelevant and misleading features we use a feature selection method that maximizes...
متن کامل